Noble Water Company <u>Consumer Confidence Report</u> - Reporting for 2021

April 2022

Is my water safe?

Caldwell Water Treatment plant, along with the U. S. EPA and the Ohio EPA, vigilantly works to deliver the highest quality drinking water possible to our consumers. The purpose of this report is to keep you informed on what contaminants were found in the water, what effects they have, and what is being done to alleviate any problems that may be encountered.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Where does my water come from?

Our water sources are Wolf Run Lake and Caldwell Lake. The consistently better-quality water is available from Wolf Run Lake and is our primary source. Wolf Run is a 220-acre lake located ½ mile east of the Belle Valley interchange at the junction of I-77 and SR 821. Intakes were constructed at the dam and the lake also has areas for swimming, fishing and boating. Caldwell Lake is located approximately 1 mile east of SR 821 at Noble CR 127. The lake has a 500-million-gallon storage capacity, with 3-level intakes located at the dam.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. For example, microbial contaminants, such as viruses and bacteria may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. To ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

How can I get involved?

If you have any questions about this report or questions concerning your water utility, or you would just like to be involved and keep informed, please contact Mr. Kendal Weisend at 740-509-0547. We want our customers to be informed about their water utility. If you want to learn more, please attend any of our regular bi-monthly board meetings. They are held at the Belle Valley Municipal Building at 4:30 pm on the 2nd Tuesday of the odd-numbered months and are open to the public.

Source Water assessment and its availability

For the purposes of source water assessments, in Ohio, all surface waters are considered to be susceptible to contamination. By their nature, surface waters are readily accessible and can be contaminated by chemicals and pathogens which may rapidly arrive at the public drinking water intake with little warning or time to prepare. The Village of Caldwell Water public water system treats the water to meet drinking water quality standards, but no single treatment technique can address all potential contaminants. The potential for water quality impacts can be further decreased by implementing measure to protect Wolf Run Lake and Caldwell Lake. More detailed information is provided in the Village of Caldwell's Drinking Water Source Assessment report, which can be obtained by calling Joe Fredrickson, Plant Superintendent, or Keith Grewell, Operator at 740-732-2552.

Unit Descriptions:

Term	<u>Definition</u>
ppm	parts per million, or milligrams per liter (mg/L)
ppb	parts per billion, or micrograms per liter (ug/L)
NTU	Nephelometric Turbidity Units. Turbidity is a measure of the cloudiness of the water. It is
	monitored because it is a good indicator of the effectiveness of the filtration system.
NA	not applicable
ND	not detected
NR	monitoring Not Required but recommended.

Important Drinking Water Definitions

Term	<u>Definition</u>
MCLG	Maximum Contaminant Level Goal: the level of a contaminant in drinking water below which
	there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	Maximum Contaminant Level: the highest level of a contaminant that is allowed in drinking
	water. MCLs are set as close to the MCLGs as feasible, using the best available treatment
	technology.
TT	<u>Treatment Technique</u> : a required process intended to reduce the level of a contaminant in
	drinking water.
AL	Action Level: the concentration of a contaminant, which, if exceeded, triggers treatment or other
	requirements which a water system must follow.
Variances & Exemption	ns State or EPA permission not to meet an MCL or a treatment technique under certain conditions
MRDLG	Maximum Residual Disinfection Level Goal: the level of a drinking water disinfectant below
	which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the
	use of disinfectants to control microbial contaminants.
MRDL	Maximum Residual Disinfection Level: the highest level of a disinfectant allowed in drinking
	water. There is convincing evidence that addition of a disinfectant is necessary for control of
	microbial contaminants.
MNR	Monitored, Not Regulated
MPL	(state assigned) Maximum Permissible Level
UCMR	<u>Unregulated Contaminant Monitoring Rule</u> : Unregulated contaminants are those for which EPA
	has not established drinking water standards.

Turbidity is a measure of the cloudiness of water and is an indication of the effectiveness of our filtration system. The turbidity limit set by the EPA is {0.3 NTU} in 95% of the daily samples and shall not exceed 5 NTU at any time. As reported above, the Village of Caldwell water system's highest recorded turbidity result (in 2013) was 0.19 NTU and the lowest monthly percentage of samples meeting the turbidity limits was 100%.

For more information, please contact:

Mr. Kendal Weisend, Operator

PH: 740-509-0547

E-Mail: noblewaterco@yahoo.com

We have a current unconditional license to operate our water system.

NOBLE WATER COMPANY

Water Quality Data Table											
Contaminates (Units) MCLG		MCL	Level Found	Range of Detection	Violation	Sample Year	Typical Source of Contaminations				
	Stage 1 DBP Volatile Organic Contaminants										
Trihalomethanes (ppb) DS 201-202	NA	80 ug/l	46.5	14.5 – 53.7	No	2021	By-product of drinking water chlorination				
Haloacetic Acids (ppb) DS201-202	NA	60 ug/l	20.51	1.7 – 39.3	No	2021	By-product of drinking water chlorination				
Chlorine (ppm)	MRDLG =4	MRDL=4	1.186	1.071 – 1.476	No	2021	Water additive used to control microbes				

Under the Stage 2 Disinfectants/Disinfection Byproducts Rule (D/DBPR), our public water system was required by the USEPA to conduct an evaluation of our distribution system. This is known as an Initial Distribution System Evaluation (IDSE) and is intended to identify locations in our distribution system with elevated disinfection byproduct concentrations. The locations selected for the IDSE may be used for compliance monitoring under Stage 2 DBPR, beginning in 2012. Disinfection byproducts are the result of providing continuous disinfection of your drinking water, and form when disinfectants combine with organic matter naturally occurring in the source water. Disinfection byproducts are grouped into two categories, Total Trihalomethanes (TTHM) and Haloacetic Acids (HAA5). USEPA sets standards for controlling the levels of disinfectants and their byproducts in drinking water, including both TTHMs and HAA5s.

Copper	1.3	AL=1.3	0.144 ppm	.007 – .189	No	2021	Corrosion of household plumbing systems
--------	-----	--------	--------------	-------------	----	------	---

Zero out of 10 samples were found to have copper in excess of the copper action level of 1.3 ppm.

Lead	0	AL=15	2.2 ppm	<1-5.14	No	2021	Corrosion of household plumbing systems
------	---	-------	---------	---------	----	------	---

Zero out of 10 samples were found to have lead in excess of the lead action level of 15 ppb.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Noble Water Company is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 800-426-4791 or at http://www.epa.gov/safewater/lead.

Caldwell Water Works Water Quality Data Table 2021

The table below lists all of the drinking water contaminants we detected that are applicable for the calendar year of this report...

The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the

concentrations of these contaminants do not change frequently.

Contaminants (Units)	MCLG	MCL	Level Found	Range of Detections	Violations	Sample Year	Typical Source of Contaminants
				Inorganic	Contami	nates	
Fluoride (ppm)	4	4	1.17	0.81 - 1.2	NO	2021	Erosion of natural deposits: Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrate (ppm)	10	10	0.525	0.20 - 0.525	NO	2021	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Lead (ppb)	0	AL=15	0	5-11	NO	2020	Corrosion of household plumbing systems.

*AA indicates Below Detectable Level

Zero out of twenty samples were found to have lead levels in excess of the lead action level of 15 ppb.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Village of Caldwell Water Works Treatment Plant is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at http://www.epa.gov/safewater/lead.

Copper (ppm)	1.3	AL=1.3	0.024	NA	NO	2020	Corrosion of household plumbing systems.
--------------	-----	--------	-------	----	----	------	--

Zero out of twenty samples were found to have copper levels in excess of the copper action level of 1.3 ppm.

Microbiological Contaminants

Turbidity (NTU)	NA	TT	0.33	0.04 - 0.33	NO	2021	Soil Runoff
Turbidity % Samples meeting standard	NA	TT	99%	NA	NO	2021	
Total Organic Carbon	NA	TT	1.61	1.17 - 2.6	NO	2021	Naturally present in the environment

The value reported under "Level Found" for Total Organic Carbon (TOC) is the lowest ratio between percentages of TOC actually removed to the percentage of TOC required to be removed. A value of greater than one (1) indicates that the water system is in compliance with TOC removal requirements. A value of less than one (1) indicates a violation of the TOC requirements.

DRINKING WATER NOTICE

Microcystins monitoring requirements not met for Caldwell Village PWS

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are in indicator of whether or not our drinking water meets health standards. During the weeks of May 2, 2021 and May 16, 2021 to May 29, 2021 we did not monitor for total microcystins and therefore cannot be sure of the quality of our drinking water during that time.

What Should I Do?

This notice is to inform you that Caldwell Village PWS did not monitor, and report results for the presence of microcystins in the public drinking water system during the week December 8, 2019 monitoring period, as required by the Ohio Environmental Protection Agency. You do not need to take any action in response to this notice.

What is being done?

Upon being notified of this violation, the water supply was required to have the drinking water analyzed for total microcystins according to their current monitoring schedule. The water supplier will take steps to ensure that adequate monitoring will be performed in the future.

A sample was collected on June 2,2021. No microcystins were detected.

Sample results and addition information may be obtained by contacting Caldwell Village PWS at:

Contact Person: Joe Frederickson or Keith Grewell

Phone Number: (740) 732-2552

Mailing Address: Caldwell Water Works

45081 Marietta Road,

Caldwell, Ohio 43724

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

PWSID: OH6100011 Facility ID: 6156878